
Advanced Operating Systems
(CS 523)

Tianyin Xu

Introduction

1

The easiest, the hardest, and the best course.

Metadata

• Instructor: Tianyin Xu
• TA: Jinghao Jia
• Website: https://cs523-uiuc.github.io/fall21/
• Add yourself on Piazza if you are not there.

• Format
• Synchronous online discussion
• W/F 12:30—13:45pm

• Open Studio (in person)
• Friday 2-4pm

• Office hours
• By appointment (online or in person)

4

https://cs523-uiuc.github.io/fall20/

Why is your course hybrid?

• … because systems people like to make things
complicated
• Well, because workloads are complicated.

• Principles
• Accommodate different needs and preferences
• The course can be taken in a purely online manner
• Provide venues for in-person discussion

4

$ Whoami
• Ass prof @ CS
• Working on software and system reliability
• Played with Facebook data centers

§ happy to chat about industry versus academia

• Grad school at UC San Diego.
• I thought nobody would come here from SD

• Applied twice for grad school.
§ I failed the first time.
§ persistence >> genius
§ understanding / experience >> wild ideas
§ doers >> talkers

5

Our TA: Jinghao Jia

• PhD student working on OS Security
• Graduated from UCSD in 2020
• Hobby: hiking
• I went to Marin Headlands every week

when doing my internship in San
Francisco

What is this course about?

• It’s all about Operating Systems Research
§ Develop a systematic understanding of systems research
§ Grasp the basic knowledge of systems research
§ Discuss the seminal systems research papers
§ Get feet wet in systems research (mini research project)

• This is a course about:
“discussing systems research”

+ “doing systems research”

6

This course does NOT teach:

• Basic concepts of operating systems

• The skills of hacking an operating system kernel
§ Kernel hacking experience is not required for 523.
§ Systems research is much broader than OS kernel.

• CS 423 / ECE 391 is the choice if you want to learn
the above.

• There is a prerequisite quiz on the course website.

7

You are expected to:

• Read research papers (before the class):
• 2 papers for each class
• Do not come to class if you don’t read J

• Discuss the reading (in class, online)
• You will either be embarrassed if you don’t read,

or pretend you were not there (and lose points)

• Conduct a semester-long mini-research project
• The best way to learn is to do it!
• The real deal of the course -- 90% of your final grade

No MP, homework, midterm or final exam!
8

Who are the target students?

• Students who are actively doing systems research.
• Review classic, seminal papers
• Explore and discuss new ideas
• Try out new, wild ideas

• Students who are interested in systems research.
• Evaluate if systems research is something for you.

• If you are neither of the above, you may reconsider.

9

Paper Reading

• Reading papers is one of the most important skill
sets in grad school.
§ You need to learn how to efficiently and effectively read

research papers
§ You will be slow in the beginning and be faster and faster
§ If you don’t practice reading, you never know how.

• We will read a lot of classic papers.
§ Those are the must-to-read papers for systems research.
§ Some of them will appear in the SysNet qual exam.
§ It’s hard to innovate if you don’t know the literature well.

10

Rule #1:

Do NOT worship any paper or author.

• A paper is not a “truth” but an “opinion”
§ You should have your own judgement

• Critical thinking is a must in grad school
§ Papers are arguments based on the authors’ work.
§ You are welcome to reject the arguments, criticize the

approaches, and question the results.
§ You will need to back up your criticisms and rejections.

• Plenty of horrible papers published in top venues.
• But you need a legit reason to “attack.”

11

How to read a research paper?
(Griswold’s version)
1. What are the motivations for this work?
2. What is the proposed solution?
3. What is the work's evaluation of the proposed

solution?
4. What is your analysis of the identified problem, idea

and evaluation?
5. What are the contributions?
6. What are future directions for this research?
7. What questions are you left with?
8. What is your take-away message from this paper?

12W. Griswold, How to Read an Engineering Research Paper, https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

How to read a research paper?
(Xu’s version)

1. What problem is the paper solving?
• Is it a real problem or a fake/imaginary problem?
• Is it an important problem?
• What’s the consequence if the problem is not solved?

• How many people can benefit from a solution?

2. Is the proposed solution useful and practically?
• How much it actually solves?
• How to use the solution?
• Do you want to use the proposed tool/system?

3. What do you learn from the paper?

13

Topics we will be discussing

• Historical Perspectives
• Unix and Plan 9

(and MINIX and Linux)
• Microkernel
• Library OS
• Synchronization
• Scheduling

14

• Memory Management
• Virtualization
• Storage and File Systems
• Communication
• Distribution
• Protection
• Reliability

Class Discussion

• There will be no “lecture”.
• Classes are for questions and discussions.
• This is a 500-level course.

• We will discuss questions by cold calls.
• I will prepare the questions;
• You can also ask questions.

• You can volunteer or you will be asked to discuss
questions in class.
• If you do not read the paper, you will be embarrassed.

15

Course Project

• A research project fitting in the broad definition of
“computer systems.”
• In a group of 1 or 2.
• If you have strong reasons to do a large project in a team

of more than 2, talk to us first.
• Exceptions are never problems, as long as they make

sense.

• Please form groups before the end of next week.
• Send us an email by the end of next week identifying

who is in your group

16

We take a very broad and inclusive
view of systems research.
• It is well connected to areas like architecture, PL,

SE, HPC, networking, and embedded/mobile.
• Security and reliability are essential aspects of

system design and implementation.
• Everyone is talking about Sys4ML and ML4Sys.
• It can be even broader, e.g.,
• Visualizing large-scale system data (e.g., logs/traces)
• Human factors in system operations
• OS Education
• Cryto for OS

17

Project Timeline (12 Weeks in Total)

• End of Week 3: Submit project proposal
• A well-defined research problem and feasible solutions.
• Show the feasibility by concrete examples, datasets, and tools for

system building.
• You can try me the idea before deciding on the project.

• End of Week 7: Submit Checkpoint 1 report
• Show your system/tool prototype and preliminary results.
• Your prototypes should be able to work with your motivating

examples.
• End of Week 11: Submit Checkpoint 2 report

• (At this point, you are expected to build your system/tool and start
evaluation)

• Describe the detailed evaluation plan in your report.
• Final project demo (15 min)
• Submit final project report (6 pages)

19

Open Studio (Friday 2-4pm)

19

• Discuss and debate your research ideas and proposals
• See what other teams are working on
• Brainstorming and getting feedback

This’s the easiest course!

• No homework, no MPs, no exams!
• “I hate them!”

• You are supposed to do research as a grad student
• So, you earn credits by doing what you’re supposed to do.

• You are supposed to read those papers.
• Qual exams
• Those are the papers every system student needs to read.

39

This’s the hardest course!

• You are expected to be a senior PhD student.
• You are expected to come up with your own ideas.

• We will release some candidate idea list.
• You are expected to design and implement your ideas.

• All we will do is to push you.
• You are expected to evaluate your system.

• There is no lecture but discussion.
• You are expected to understand the basic of the paper;
• The class is mainly for discussion and QA.

40

FAQ

• I have no interested in research. Do you have some
pure engineering projects?
• No. // We tried before, and it didn’t work well.

• I don’t want to come to lectures. Can I skip?
• Yes, but you will lose the 10% class discussion points.

• I don’t want to come to open studio. Can I skip?
• Yes.

• Can I simply reuse my own research projects?
• Unfortunately, yes

• Then, I don’t need to do anything in your course?
• Yes, if that’s really your plan.

40

Most projects fall into the following
categories:

• Study: qualitatively or quantitatively analyze an
important aspect of a type of systems.

• Measurement: measure/characterize an important
aspect of a type of systems through experiments.

• Tooling: design and implement a new tool that can
address an important problem in modern systems

• System: design and implement a novel system with
new capabilities or properties

20

Examples
• Study

• Chou et al., An Empirical Study of Operating Systems Errors,
SOSP 2001.

• Measurement
• Pillai et al., All File Systems Are Not Created Equal: On the

Complexity of Crafting Crash-Consistent Applications, OSDI
2014.

• Tooling
• Li et al., CP-Miner: A Tool for Finding Copy-paste and Related

Bugs in Operating System Code, OSDI 2004.

• System
• Rosenblum et al., The Design and Implementation of a Log-

Structured File System, SOSP 1991.

21

Evaluation of Research Projects

• It will be evaluated using the same criteria as
SOSP/OSDI submissions.
• Overall merit
• Importance of the topic
• Originality and insightfulness
• Validation and thoroughness
• Presentation and clarify

• Dream bar: CP-miner, Veriflow
• High bar: Sufficiently interesting to be a real paper
• Low bar: Something you can brag about

22

Project Grading

• A to A+: significant results and publishable work;
• A- to A: strong results and a clear roadmap towards

publishable work;
• B+ to A-: interesting results but quite far from being

significant;
• B to B+: a good exploration but leads to nothing;
• B- to B: some efforts of exploration; no conclusion.

(You should have the courage to explore and fail)

24

Best Project Award

• Sponsored by Facebook

24

Tips

• Pick a good problem
• Why is this problem interesting?
• What is the impact of solving this problem?
• Look at what others are doing:

• Academic conferences: OSDI/SOSP, NSDI, EuroSys, ATC , etc.
• Engineering blogs and postmortems

• Pick a problem that is achievable.
• Start from small (you only have one semester)
• What resources would you need to investigate the problem?

(ask if you’re serious)
• Think about how to evaluate your work.

25

Systems Research Conferences

• SOSP/OSDI (one conference with two names)
• ASPLOS (arch + PL + OS)
• NSDI (networked systems)
• FAST (file and storage systems)
• EuroSys (European)
• MobiSys (mobile systems)
• USENIX ATC (everything)

26

Systems Research Conferences

• The research cycle is long;
so as the publication cycle.

• There not many papers to read, but you are expected to
read the small number of published work.

27

Questions about the project?

• We are always here to help (use us well; but don’t
abuse us)
• Open Studio
• Appointment
• Email

28

Finding Teammates NOW!

• Piazza (the “Search for Teammates!” section)
• I’m Tianyin Xu, a 9th year grad student
• I’m interested in reliability – I enjoy watching failures.
• I have an idea on configuration management [2000 words]

• We will give you 5-minute to pitch ideas at the
beginning of each class.
• Send me or TA an email if you want to do it.

18

Exploring your project NOW!

• Project proposals due in 3 weeks (one page)
• What do you plan to do?
• Why is it interesting?
• How you’ll do it (feasibility)?

• What is the basic idea?
• What’s your plan and schedule?
• What you’re not sure about?
• What resources you need?

• We can provide VMs

23

Problem Statement

How to find good (research) ideas?

•Marinov 4-way method:
• Talking
• Reading
• Hacking
• Dreaming

29

Marinov method, the bad way

• Talking
• ”Hey, you are the advisor – tell me a damn OSDI idea.”

• Reading
• Find ideas by reading the Limitation section

• Hacking
• Let me read Linux kernel before doing research.
• Let me take CS 423 before doing research.

• Dreaming
• Sleep → Apple → Gravity

30

Marinov method, the good way
• Talking
• Articulate the problem you want to solve

• Why it’s important and why it hasn’t been addressed?
• Pitch your idea with concrete examples or data points

• Why your idea can solve the problem in a better way?

• Reading
• Seek for inspiration, but I don’t find it too useful.

• Hacking
• Look at the design and implementation of existing systems
• Hack those systems to see if only a hack is needed

• Dreaming
• What’s your wish list?

31

Tips that may be useful (I)

• Understanding the problem first!
• Innovation without understanding leads to BS.
• Understanding itself could be a huge contribution.
• Empirical studies and measurements are great ways

to develop understanding.
• E.g., Goto statement considered harmful

• If you have a topic/direction/problem but don’t have
a crisp idea, work on a study or a measurement.
• Ask yourself questions – let your curiosity guide you.

32

Examples of Studies
• Chou et al., An Empirical Study of Operating Systems Errors,

SOSP 2001.
• Study bugs in the OS kernels

• Lu et al., Learning from Mistakes — A Comprehensive Study
on Real World Concurrency Bug Characteristics, ASPLOS 2008.
• Study concurrency bugs

• Lu et al., A Study of Linux File System Evolution, FAST 2013.
• Study code changes in file systems

• Simple Testing Can Prevent Most Critical Failures: An Analysis
of Production Failures in Distributed Data-intensive Systems,
OSDI 2014.
• Study catastrophic failures in data systems

33

Examples of Measurement
• Ren et al., An Analysis of Performance Evolution of Linux's

Core Operations, SOSP 2019.
• Measuring system call performance

• Ganesan et al., Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and
Corruptions, FAST 2017.
• Measuring fault tolerance by fault injection testing

• Li et al., Tales of the Tail: Hardware, OS, and Application-level
Sources of Tail Latency, SOCC 2014.
• Measuring and analyzing tail latency

34

Tips that may be useful (II)

• Build on top of your experience
• Systems work is mostly about experiences.
• You need to know the systems well, before doing

research (or development).
• Don’t attack a type of systems that you have no

experience in your project.
• If you never hacked the Linux kernel, don’t do a kernel

project (taking 423 first).
• Scratching your own itch
• The dreaming idea – what do you wish to have?

35

Tips that may be useful (III)

• What system properties you want to improve?
• Performance – making systems run fast
• Reliability – dealing with failures
• Security – dealing with attacks
• Usability – easy to use / less error-prone
• Manageability – systems need to be managed
• Compatibility / Portability
• Scalability – making systems run at large scale
• Energy-efficient / environment-friendly

• Pick one; don’t try to do everything
36

Tips that may be useful (IV)

• What are driving forces for new system research?
• Hardware (multiprocessor, big memory)
• Network (distributed systems, P2P)
• Scale (datacenters, edge)
• Application (GFS, MapReduce, Haystack)
• Computing model (cloud, serverless)
• Operation (DevOps, microservices)

37

Tips that may be useful (V)

• Ideas are pipedreams without execution.
• No system can be done in one day.
• Manage your time well.
• Surprisingly, this is often what makes the difference.

• Insights often come from doing things.
• Get your hands dirty

• Think about evaluation at the design phase
• How will you evaluate?

38

“Can you post the projects that have
been done in the past?” (I)

• Understanding Configuration Dependencies in Cloud Systems
• A comprehensive study of configuration dependencies of cloud

systems (including Hadoop, HBase, Spark, etc)
• Published at FSE’20 (a top Software Engineering conference)

• Cozart: Automatic disaggregation for off-the-shelf OS kernels
• A kconfig-based OS kernel debloating tool

• Published at Sigmetrics’20
• Selected as a research highlight by CACM

• Characterizing Reliability Issues in a Large Deployment of
Lustre Distributed File System
• A comprehensive analysis of storage failures of a distributed file

system deployed in the Blue Water supercomputer
• Published at SC’20 (a top Supercomputing conference)
• Nominated for both Best Paper and Best Student Paper 41

“Can you post the projects that have
been done in the past?” (II)

• Forensic Analysis of Configuration-oriented Cyber Attacks
• Built a forensic analysis infrastructure for configuration-change tracking

and integrate it with provenance-based forensic analysis
• Will appear at NDSS’21 (a top Security conference)

• Leyenda: An Adaptive, Hybrid, Radix Sorting Algorithm for
Large-scale Data
• Sorting 60GB data in 290 seconds

• Runner-up at SIGMOD’19 Sorting Contest.

• Toller: Improving Android UI testing infrastructure
• Optimize the perf. of 3 key operations in Android UI testing framework

• Published at ISSTA’21 (a top Software Engineering conference)

41

What’s the secret of publishing my 523
project at top conferences?

• I have no magic – good problem + good execution

• It takes longer than a semester.
• Unless you are working on some ML/DM stuff.

• The successful ones are typically connected to the
student’s own interests and/or research
• Leo Chen (SRE and configuration management)
• Austin Kuo (OS kernel specialization and debloating)
• Wajih Ul Hassan (provenance and forensic analysis)

• Time management and hard work
41

