
Advanced Operating Systems
(CS 523)

Tianyin Xu

Introduction

1

Please turn-off your camera
and mute yourself for now.

Zoom Protocol

This course will die without interactive
discussion, but we need an etiquette.

•Mute yourself when you are not speaking.
• To ask questions, unmuted and just speak up.
• Feel free to interrupt me (you know how it works).
• Use chat box to resolve collisions.

•When you speak, say your name first.
• “Hi, this is Lilia. Can you explain X and Y…”

• Please have a profile for your Zoom.
• So, we know who is who.

2

Zoom Protocol

This course will die without interactive
discussion, but we need an etiquette.

• Collison resolution algorithm
• Who speak the loudest has the voice.
• Put your name on the chat (serialization);
• I will call names in order;
• I am monitoring the chat window.
• You can also choose to put questions on the chat.

2

Metadata

• Instructor: Tianyin Xu
• TA: Xudong Sun
• Website: https://cs523-uiuc.github.io/fall20/
• Piazza: piazza.com/illinois/fall2020/cs523
• Format
• It’s a synchronous discussion.
• There is no video recording.
• I sometimes talk BS / bad jokes.
• There is no lecture (and it’s useless).

4

https://cs523-uiuc.github.io/fall20/
https://piazza.com/illinois/fall2020/cs523

$ Whoami
• Ass prof @ CS
• Working on software and system reliability
• Played with Facebook data centers

§ happy to chat about industry versus academia

• Grad school at UC San Diego.
• So, you know I’m serious J

• Applied twice for grad school.
§ I failed the first time.
§ persistence >> genius
§ understanding/experience >> wild ideas
§ doers >> talkers

5

What is this course about?

• It’s all about Operating System Research
§ Develop a systematic understanding of system research
§ Grasp the basic knowledge of system research
§ Discuss the seminal system research papers
§ Get feet wet in systems research (mini research project)

• This is a course about:
“discussing system research”
+ “doing system research”

6

This course does NOT teach:

• Basic concepts of operating systems

• The skills of hacking an operating system kernel
§ Kernel hacking experience is not required for 523.
§ System research is much broader than OS kernel.

• CS 423 is the choice if you want to learn the above.

• There is a prerequisite quiz on the course website.

7

You are expected to:

• Read research papers (before the class):
• 2 papers for each class
• Do not come to class if you don’t read J

• Discuss the reading (in class, online)
• You will either be embarrassed if you don’t read,

or pretend you were not there (and lose points)
• Conduct a semester-long mini-research project
• The best way to learn is to do it!
• The real deal of the course -- 90% of your final grade

No MP, homework, midterm or final exam!

8

Who are the target students?

• Students who are actively doing systems research.
• Review classic, seminal papers
• Explore and discuss new ideas
• Try out new, wild ideas

• Students who are interested in system research.
• Evaluate if systems research is something for you.

• If you are neither of the above, you need to be
aware that this course is not designed for you.
• In other words, you may suffer…

9

Paper Reading

• Reading papers is one of the most important skill
sets in grad school.
§ You need to learn how to efficiently and effectively read

research papers

• We will read a lot of classic papers.
§ Those are the must-to-read papers for systems research.
§ Some of them will appear in the SysNet qual exam.
§ It’s hard to innovate if you don’t know the literature well.

10

Rule #1:

Do NOT worship any paper or author.
• A paper is not a “truth” but an “opinion”

§ You should have your own judgement

• Critical thinking is a must in grad school
§ Papers are arguments based on the authors’ work.
§ You are welcome to reject the arguments, criticize the

approaches, and question the results.
§ You will need to back up your criticisms and rejections.

• There are plenty of horrible papers published
in top conferences.
• But you need a legit reason to “attack.”

11

How to read a research paper?
(Griswold’s version)
1. What are the motivations for this work?
2. What is the proposed solution?
3. What is the work's evaluation of the proposed

solution?
4. What is your analysis of the identified problem, idea

and evaluation?
5. What are the contributions?
6. What are future directions for this research?
7. What questions are you left with?
8. What is your take-away message from this paper?

12W. Griswold, How to Read an Engineering Research Paper, https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

How to read a research paper?
(Xu’s version)

1. What problem is the paper solving?
• Is it a real problem or a fake/imaginary problem?
• Is it an important problem?

• What’s the consequence if the problem is not solved?
• How many people can benefit from a solution?

2. Is the proposed solution useful and practically?
• How much it actually solves?
• How to use the solution?
• Do you want to use the proposed tool/system?

3. What do you learn from the paper?

13

Topics we will be discussing

• Historical Perspectives
• Unix and Plan 9

(and MINIX and Linux)
• Microkernel
• Library OS
• Synchronization
• Scheduling

14

• Memory Management
• Virtualization
• Storage and File Systems
• Communication
• Distribution
• Protection
• Reliability

Class Discussion

• There will be no lecture.
• Classes are for questions and discussions.
• This is a 500-level course.

• We will discuss questions by cold calls.
• I will prepare the questions;
• You can also ask questions.

• You can volunteer or you will be asked to discuss
questions in class.
• If you do not read the paper, you will be embarrassed.

15

Course Project

• A research project fitting in the broad definition of
“systems.”
• In a group of 1 or 2.
• If you have strong reasons to do a large project in a team

of more than 2, talk to us first.

• Please form groups before the end of next week.
• Send us an email by the end of next week identifying

who is in your group

16

We take a very broad and inclusive
view of systems research.
• It is well connected to areas like architecture, PL,

SE, HPC, networking, and embedded/mobile.
• Security and reliability are essential aspects of

system design and implementation.
• Everyone is talking about Sys4ML and ML4Sys.
• It can be even broader, e.g.,
• Visualizing large-scale system data (e.g., logs/traces)
• Human factors in system operations
• OS Education
• Cryto for OS

17

Project Timeline (12 Weeks in Total)

• End of Week 3: Submit project proposal
• A well-defined research problem and feasible solutions.
• Show the feasibility by concrete examples, datasets, and tools for

system building.
• You can try me the idea before deciding on the project.

• End of Week 7: Submit Checkpoint 1 report
• Show your system/tool prototype and preliminary results.
• Your prototypes should be able to work with your motivating

examples.
• End of Week 11: Submit Checkpoint 2 report

• (At this point, you are expected to build your system/tool and start
evaluation)

• Describe the detailed evaluation plan in your report.
• Final project demo (15 min)
• Submit final project report (6 pages)

19

Most projects fall into the following
categories:

• Study: qualitatively or quantitatively analyze an
important aspect of a type of systems.

• Measurement: measure/characterize an important
aspect of a type of systems through experiments.

• Tool: design and implement a new tool that can
address an important problem in modern systems

• System: design and implement a novel system with
new capabilities or properties

20

Examples
• Study

• Chou et al., An Empirical Study of Operating Systems Errors,
SOSP 2001.

• Measurement
• Pillai et al., All File Systems Are Not Created Equal: On the

Complexity of Crafting Crash-Consistent Applications, OSDI
2014.

• Tool
• Li et al., CP-Miner: A Tool for Finding Copy-paste and Related

Bugs in Operating System Code, OSDI 2004.

• System
• Rosenblum et al., The Design and Implementation of a Log-

Structured File System, SOSP 1991.

21

Evaluation of Research Projects

• It will be evaluated using the same criteria as
SOSP/OSDI submissions.
• Overall merit
• Importance of the topic
• Originality and insightfulness
• Validation and thoroughness
• Presentation and clarify

• Dream bar: CP-miner, Veriflow
• High bar: Sufficiently interesting to be a real paper
• Low bar: Something you can brag about

22

Project Grading

• A to A+: significant results and publishable work;
• A- to A: strong results and a clear roadmap towards

publishable work;
• B+ to A-: interesting results but quite far from being

significant;
• B to B+: a good exploration but leads to nothing;
• B- to B: some efforts of exploration; no conclusion.

(You should have the courage to explore and fail)

24

Tips

• Pick a good problem
• Why is this problem interesting?
• What is the impact of solving this problem?
• Look at what others are doing:

• Academic conferences: OSDI/SOSP, NSDI, EuroSys, ATC , etc.
• Engineering blogs and postmortems

• Pick a problem that is achievable.
• Start from small (you only have one semester)
• What resources would you need to investigate the problem?

(ask if you’re serious)
• Think about how to evaluate your work.

25

System Research Conferences

• SOSP/OSDI (one conference with two names)
• ASPLOS (arch + PL + OS)
• NSDI (networked systems)
• FAST (file and storage systems)
• EuroSys (European)
• MobiSys (mobile systems)
• USENIX ATC* (everything)

* I never (or failed to) publish there.

26

System Research Conferences

• The research cycle is long;
so as the publication cycle.

• There not many papers to read, but you are expected to
read the small number of published work.

27

Questions about the project?

• We are always here to help (use us well; but don’t
abuse us)
• Office Hours
• Appointment
• Email

28

Finding Teammates NOW!

• Piazza (the “Search for Teammates!” section)
• I’m Tianyin Xu, a 9th year grad student
• I’m interested in reliability – I enjoy watching failures.
• I have an idea on configuration management [2000 words]

• We will give you 5-minute to pitch ideas at the
beginning of each class.
• Send me or Xudong an email if you want to do it.

18

Exploring your project NOW!

• Project proposals due in 3 weeks (one page)
• What do you plan to do?
• Why is it interesting?
• How you’ll do it (feasibility)?

• What is the basic idea?
• What’s your plan and schedule?
• What you’re not sure about?
• What resources you need?

• We can provide VMs

23

Problem Statement

How to find good (research) ideas?

•Marinov 4-way method:
• Talking
• Reading
• Hacking
• Dreaming

29

Marinov method, the bad way

• Talking
• ”Hey, you are the advisor – tell me a damn OSDI idea.”

• Reading
• Find ideas by reading the Limitation section

• Hacking
• Let me read Linux kernel before doing research.
• Let me take CS 423 before doing research.

• Dreaming
• Sleep → Apple → Gravity

30

Marinov method, the good way
• Talking
• Articulate the problem you want to solve

• Why it’s important and why it hasn’t been addressed?
• Pitch your idea with concrete examples or data points

• Why your idea can solve the problem in a better way?

• Reading
• Seek for inspiration, but I don’t find it too useful.

• Hacking
• Look at the design and implementation of existing systems
• Hack those systems to see if only a hack is needed

• Dreaming
• What’s your wish list?

31

Some Important Principles (I)

• Understanding the problem first!
• Innovation without understanding leads to BS.
• Understanding itself could be a huge contribution.
• Empirical studies and measurements are great ways

to develop understanding.
• If you have a topic/direction/problem but don’t have

a crisp idea, work on a study or a measurement.
• Ask yourself questions – let your curiosity guide you.

32

Examples of Studies
• Chou et al., An Empirical Study of Operating Systems Errors, SOSP 2001.

• Study bugs in the OS kernels

• Lu et al., Learning from Mistakes — A Comprehensive Study on Real
World Concurrency Bug Characteristics, ASPLOS 2008.
• Study concurrency bugs

• Lu et al., A Study of Linux File System Evolution, FAST 2013.
• Study code changes in file systems

• Simple Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed Data-intensive Systems, OSDI 2014.
• Study catastrophic failures in data systems

33

Examples of Measurement
• Ren et al., An Analysis of Performance Evolution of Linux's Core

Operations, SOSP 2019.
• Measuring system call performance

• Ganesan et al., Redundancy Does Not Imply Fault Tolerance: Analysis of
Distributed Storage Reactions to Single Errors and Corruptions, FAST
2017.
• Measuring fault tolerance by fault injection testing

• Li et al., Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency, SOCC 2014.
• Measuring and analyzing tail latency

34

Some Important Principles (II)

• Build on top of your experience
• Systems work is mostly about experiences.
• You need to know the systems well, before doing

research (or development).
• Don’t attack a type of systems that you have no

experience in your project.
• If you never hacked the Linux kernel, don’t do a kernel

project (taking 423 first).
• Scratching your own itch
• The dreaming idea – what do you wish to have?

35

Some Important Principles (III)

• What system properties you want to improve?
• Performance – making systems run fast
• Reliability – dealing with failures
• Security – dealing with attacks
• Usability – easy to use / less error-prone
• Manageability – systems need to be managed
• Compatibility / Portability
• Scalability – making systems run at large scale
• Energy-efficient / environment-friendly

36

Some Important Principles (IV)

• What are driving forces for new system research?
• Hardware (multiprocessor, big memory)
• Network (distributed systems, P2P)
• Scale (datacenters, edge)
• Application (GFS, MapReduce, Haystack)
• Computing model (cloud, serverless)
• Operation (DevOps, microservices)

37

Some Important Principles (V)

• Ideas are pipedreams without execution.
• No system can be done in one day.
• Manage your time well.

• Surprisingly, this is often what makes the difference.
• Insights often come from doing things.

• Get your hands dirty
• Think about evaluation at the design phase

• How will you evaluate?

38

This’s the easiest course!

• No homework, no MPs, no exams!
• I hate them!

• You are supposed to do research as a grad student
• So, you earn credits by doing what you’re supposed to do.

• You are supposed to read those papers.
• Qual exams
• Those are the papers every system student needs to read.

39

This’s the hardest course!

• You are expected to be a senior PhD student.
• You are expected to come up with your own ideas.

• We will release some useless idea list.
• You are expected to design and implement your ideas.

• All we will do is to push you.
• You are expected to evaluate your system.

• There is no lecture but discussion.
• You are expected to understand the basic of the paper;
• The class is mainly for discussion and QA.

40

It’s my favorite course.

42

“Can you post the projects that have
been done in the past?” (I)

• Understanding Configuration Dependencies in Cloud Systems
• A comprehensive study of configuration dependencies of cloud

systems (including Hadoop, HBase, Spark, etc)
• Later published at FSE’20 (top conf. of Software Engineering)

• Cozart: Automatic disaggregation for off-the-shelf OS kernels
• A kconfig-based OS kernel debloating tool

• Later published at Sigmetrics’20

• Characterizing Reliability Issues in a Large Deployment of
Lustre Distributed File System
• A comprehensive analysis of storage failures of a distributed file

system deployed in the Blue Water supercomputer
• Later published at SC’20.

41

“Can you post the projects that have
been done in the past?” (II)

• Forensic Analysis of Configuration-oriented Cyber Attacks
• Built a forensic analysis infrastructure for configuration-change tracking

(support both in-memory data structure and syscalls) and integrate it
with provenance-based forensic analysis
• Submitted recently to a top Security conference

• Leyenda: An Adaptive, Hybrid, Radix Sorting Algorithm for
Large-scale Data
• Sorting 60GB data in 290 seconds

• Runner-up at SIGMOD’19 Sorting Contest.

• Toller: Improving Android UI testing infrastructure
• Optimize the perf. of 3 key operations in Android UI testing framework

• yielding 30X speedup
• Poster at HotMobile’20.
• Toller is used in the student’s own projects.

41

