Advanced Operating Systems (CS 523)

Fall 2019

Tianyin Xu
meta-info

- Instructor: Tianyin Xu
- Teaching assistant: Jack Chen
- Course website (with course schedule)
 - https://cs523-uiuc.github.io/fall19/
- Slack:
 - #cs523 at the SysNet slack
- Piazza (*do we need it?*)
$ whoami

- Assistant Professor in the CS department
- Working on software and system reliability
- Worked at Facebook on dealing with datacenter-level failures before joining UIUC
 - projects completely different from my PhD thesis
 - happy to chat about industry vs. academia
- Did grad school at UC San Diego.
 - That’s a dream job: I wish I could be a tenured grad student.
- Applied twice for grad school.
 - I failed the first time.
 - persistence >> genius
What is this course about?

• It’s all about Operating System Research
 ▪ Develop a systematic understanding of system research
 ▪ Grasp the basic knowledge of system research
 ▪ Discuss the seminal system research papers
 ▪ Get feet wet in systems research (mini research project)

• This is a course about:
 “discussing research” + “doing research”
This course does NOT teach:

• Basic concepts of operating systems

• The skills of hacking an operating system kernel
 ▪ Kernel hacking experience is not required for 523.
 ▪ System research is much broader than OS kernel.

• CS 423 is the choice if you want to learn the above.

• There is a prerequisite quiz on the course website.
Who are the target students?

• Students who are actively doing systems research.
 • Review classic, seminal papers
 • Discover and discuss new ideas
 • Try out new ideas

• Students who are interested in system research.
 • Evaluate if systems research is something for you.

• If you are neither of the above, you need to be aware that this course is not designed for you.
You are expected to:

• **Read research papers (before the class):**
 • 2 papers for each class
 • Do not come to class if you don’t read 😊

• **Discuss the reading (in class)**
 • Again, it’s hard to discuss if you don’t read.

• **Conduct a semester-long mini-research project**
 • The best way to learn is to do it
 • The main purpose of the course -- **85% of your final grade**

No midterm or final exam!
Reading

• Reading papers is one of the most important skill sets in grad school.
 ▪ You need to learn how to **efficiently** and **effectively** read research papers

• **We will read a lot of classic papers.**
 ▪ Those are the must-to-read papers for systems research.
 ▪ Some of them will appear in the SysNet qual exam.
 ▪ You can’t innovate if you don’t understand them deeply.

• **Come to CS 591 SN** if you want to discuss new papers.
Do NOT worship any paper or author

• A paper is not a “truth” but an “opinion”
 ▪ You should have your own judgement

• Critical thinking is a must in grad school
 ▪ Papers are arguments based upon research.
 ▪ You are welcome to reject the arguments, criticize the approaches, and question the results.
 ▪ You will need to back up your criticisms and rejections.

• There are plenty of horrible papers published in top conferences.
 • But you need a legit reason to “attack.”
How to read a research paper? (Griswold’s version)

1. What are the motivations for this work?
2. What is the proposed solution?
3. What is the work's evaluation of the proposed solution?
4. What is your analysis of the identified problem, idea and evaluation?
5. What are the contributions?
6. What are future directions for this research?
7. What questions are you left with?
8. What is your take-away message from this paper?
How to read a research paper? (Xu’s version)

1. What **problem** is the paper solving?
 • Is it a real problem or a fake/imaginary problem?
 • Is it an important problem? What’s the consequence if the problem is not solved?
 • How prevalent is the problem? How many people can benefit from a solution?

2. Does the proposed solution **practically** solve the problem?
 • If not, how much it **actually** solves?
 • Do you believe in the solution?
 • Do you want to use the proposed tool/system?

3. Do you **like** or **hate** the paper? Why?

4. What do you **learn** from the paper?
Topics we will be discussing

• Historical Perspectives
• Unix and Plan 9 (and MINIX and Linux)
• Microkernel
• Library OS
• Synchronization
• Scheduling
• Memory Management
• Virtualization
• Storage and File Systems
• Communication
• Distribution
• Protection
• Reliability
System research conferences

• **SOSP/OSDI** (one conference with two names)
• ASPLOS (PL and arch)
• NSDI (networked systems)
• FAST (file and storage systems)
• EuroSys (European)
• SOCC* (Cloud systems)
• Sigmetrics* (measurement)
• USENIX ATC* (everything)
• (related) ICSE/FSE, CHI, MobiSys/MobiCom, SIGCOMM*, IMC, PLDI*

* I never (or failed to) publish there.
System research conferences

• The research cycle is long.
• So as the publication cycle.

@natefoster @natefoster · Aug 27
In 2018, @CSrankings counted 3456 papers in AI/ML (AAAI + IJCAI + ICML + KDD + NeurIPS) vs. 47 in Operating Systems (OSDI [only held in even years] + SOSP [only held in odd years])

• There not many papers to read, but you are expected to read the small number of published work.
Class Discussion

• There will be no “lecture.”
 • This is a 500-level course.

• We will discuss papers by playing card games.
 • We will practice it today 😊

• You can volunteer or will be asked to discuss questions in class.
 • If you do not read the paper, you will be embarrassed.
Course Project

• A research project fitting in the broad definition of “systems.”
 • In a group of 1 or 2.
 • If you have strong reasons to do a large project in a team of more than 2, talk to us first.

• Please form groups before the end of next week.
 • Send me an email by the end of next week identifying who is in your group
Most projects fall into the following categories:

• **Study**: qualitatively or quantitatively analyze an important aspect of one type of systems.

• **Measure**: measure and characterize an important aspect of one type of systems through experimentations.

• **Tool**: design and implement a new tool that can address an important problem in modern systems.

• **System**: design and implement a novel system with new capabilities or properties.
Examples

• **Study**

• **Measure**
 • Pillai et al., All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications, OSDI 2014.

• **Tool**

• **System**
Evaluation of research projects

• It will be evaluated using the same criteria as SOSP/OSDI submissions.
 • Overall merit
 • Importance of the topic
 • Originality and insightfulness
 • Validation and thoroughness
 • Presentation and clarify

• **Dream bar**: CP-miner, Veriflow
• **High bar**: sufficiently interesting to be a real paper
• **Low bar**: something you can brag about
What if you are not able to (or not interested in) find decent idea?

• We prepared a measurement project for you.

• Container measurement project (CMP)
 • Measure the performance overhead of modern container techniques (e.g., Docker versus gVisor)
 • Understand the nitty-gritty details that affect the performance of containerized applications
 • Learn how to conduct a solid measurement study
 • which will benefit your future research/work
 • Potentially aiming for a sigmetrics-like conference
 • Link: https://cs523-uiuc.github.io/fall19/cmp.html
Project Timeline (12 Weeks in Total)

• **End of Week 3: Submit project proposal**
 - A well-defined research problem and feasible solutions.
 - Show the feasibility by concrete examples, datasets, and tools for system building.
 - *I encourage you try me the idea before deciding on the project.*

• **End of Week 7: Submit Checkpoint 1 report**
 - Show your system/tool prototype and preliminary results.
 - Your prototypes should be able to work with your motivating examples.

• **End of Week 11: Submit Checkpoint 2 report**
 - (At this point, you are expected to build your system/tool and start evaluation)
 - Describe the detailed evaluation plan in your report.

• **Final project demo (15 min)**

• **Submit final project report (6 pages)**
Exploring your project NOW!

• Initial project proposals due in 3 weeks (one page)
 • What do you plan to do?
 • Why is it interesting?
 • How you’ll do it (feasibility)?
 • What you’re not sure about?

Problem Statement
Grading

• **A to A+**: significant results and publishable work;
• **A- to A**: strong results and a clear roadmap towards publishable work;
• **B+ to A-**: interesting results but quite far from being significant;
• **B to B+**: a good exploration but leads to nothing;
• **B- to B**: some efforts of exploration; no conclusion.

(You should have the courage to explore and fail)
Tips

• Pick a good problem
 • Why is this problem interesting?
 • What is the impact of solving this problem?
 • Look at what others are doing:
 • Academic conferences: OSDI/SOSP, NSDI, EuroSys, SOCC, ATC
 • Engineering blogs and postmortems

• Pick a problem that is achievable.
 • Start from small (you only have one semester)
 • What resources would you need to investigate the problem? (ask if you’re serious)

• Think about how to evaluate your work
We take a very broad and inclusive view of system research.

• It is well connected to areas like architecture, PL, SE, HPC, networking, and embedded/mobile.
• Security and reliability are essential aspects of system design and implementation.
• Everyone is talking about Sys4ML and ML4Sys.
• It can be even broader, e.g.,
 • Visualizing large-scale system data (e.g., logs and traces)
 • Human factors in system operations and management
 • Education of operating systems
 • Crypto for OS
Questions about the project?

• We are always here to help (use us well; but don’t abuse us)
 • Slack channel
 • Email
 • Office Hour
 • Appointment

• Systems research requires no genius.
 • It requires understanding and experiences.
Let’s play the card game.

• Write on the card
 ▪ Your full name
 ▪ The name you want me to call you
 ▪ A description about yourself

• Tianyin Xu
• Tianyin/TY/t
• A watchman in a cornfield
Let’s play the card game.

• What’s your name?
• What are you working on?
• What are you looking for in cs523?
• What is the coolest thing you did in the summer?

• My name is Tianyin.
• I work on system reliability.
• I hope to have fun in cs523.
• I worked with Dimitrios, Apo, and Josep on new page table designs in the summer.
Let’s play the card game.

• What is an operating system?
• What is inside an operating system?
 • Is Window systems a part of OS?
 • The question discussed in the supreme court in 1998
 • How about web browser?
 • Apache web server?
 • Compiler?
 • Device firmware?
Let’s play the card game.

• What drives an OS design to change?
 • Hardware trend?
 • Application demand?
 • User demand?

• Can you give concrete examples?
Let’s play the card game.

• What is virtual memory?
• Why do we need virtual memory?
• How does virtual memory actually work?
Let’s play the card game.

• What is a “virtual machine”?
• Is container a virtual machine?
Let’s play the card game.

• What is a system call?