Advanced Operating Systems (CS 523)

Fall 2019

Tianyin Xu

meta-info

- Instructor: Tianyin Xu
- Teaching assistant: Jack Chen
- Course website (with course schedule)
 - <u>https://cs523-uiuc.github.io/fall19/</u>
- Slack:
 - #cs523 at the SysNet slack
- Piazza (do we need it?)

\$ whoami

- Assistant Professor in the CS department
- Working on software and system reliability
- Worked at Facebook on dealing with datacenter-level failures before joining UIUC
 - projects completely different from my PhD thesis
 - happy to chat about industry vs. academia
- Did grad school at UC San Diego.
 - That's a dream job: I wish I could be a tenured grad student.
- Applied twice for grad school.
 - I failed the first time.
 - persistence >> genius

What is this course about?

• It's all about **Operating System Research**

- Develop a systematic understanding of system research
- Grasp the basic knowledge of system research
- Discuss the seminal system research papers
- Get feet wet in systems research (mini research project)

This is a course about: "discussing research" + "doing research"

This course does **NOT** teach:

- Basic concepts of operating systems
- The skills of hacking an operating system kernel
 - Kernel hacking experience is not required for 523.
 - System research is much broader than OS kernel.
- CS 423 is the choice if you want to learn the above.
- There is a prerequisite quiz on the course website.

Who are the target students?

- Students who are actively doing systems research.
 - Review classic, seminal papers
 - Discover and discuss new ideas
 - Try out new ideas
- Students who are interested in system research.
 - Evaluate if systems research is something for you.
- If you are neither of the above, you need to be aware that this course is not designed for you.

You are expected to:

- Read research papers (before the class):
 - 2 papers for each class
 - Do not come to class if you don't read ^(C)
- Discuss the reading (in class)
 - Again, it's hard to discuss if you don't read.
- Conduct a semester-long mini-research project
 - The best way to learn is to do it
 - The main purpose of the course -- 85% of your final grade

No midterm or final exam!

Reading

- Reading papers is one of the most important skill sets in grad school.
 - You need to learn how to efficiently and effectively read research papers
- We will read a lot of classic papers.
 - Those are the must-to-read papers for systems research.
 - Some of them will appear in the SysNet qual exam.
 - You can't innovate if you don't understand them deeply.

Come to CS 591 SN if you want to discuss new papers.

Do NOT worship any paper or author

- A paper is not a "truth" but an "opinion"
 - You should have your own judgement

• Critical thinking is a must in grad school

- Papers are arguments based upon research.
- You are welcome to reject the arguments, criticize the approaches, and question the results.
- You will need to back up your criticisms and rejections.

• There are plenty of horrible papers published in top conferences.

• But you need a legit reason to "attack."

How to read a research paper? (Griswold's version)

- 1. What are the **motivations** for this work?
- 2. What is the proposed **solution**?
- 3. What is the work's **evaluation** of the proposed solution?
- 4. What is your analysis of the identified problem, idea and evaluation?
- 5. What are the **contributions**?
- 6. What are **future directions** for this research?
- 7. What questions are you left with?
- 8. What is your take-away message from this paper?

How to read a research paper? (Xu's version)

- 1. What **problem** is the paper solving?
 - Is it a real problem or a fake/imaginary problem?
 - Is it an important problem? What's the consequence if the problem is not solved?
 - How prevalent is the problem? How many people can benefit from a solution?
- 2. Does the proposed solution **practically** solve the problem?
 - If not, how much it *actually* solves?
 - Do you believe in the solution?
 - Do you want to use the proposed tool/system?
- 3. Do you **like** or **hate** the paper? Why?
- 4. What do you **learn** from the paper?

Topics we will be discussing

- Historical Perspectives
- Unix and Plan 9 (and MINIX and Linux)
- Microkernel
- Library OS
- Synchronization
- Scheduling

- Memory Management
- Virtualization
- Storage and File Systems
- Communication
- Distribution
- Protection
- Reliability

System research conferences

- **SOSP/OSDI** (one conference with two names)
- ASPLOS (PL and arch)
- NSDI (networked systems)
- FAST (file and storage systems)
- EuroSys (European)
- SOCC* (Cloud systems)
- Sigmetrics* (measurement)
- USENIX ATC* (everything)
- (related) ICSE/FSE, CHI, MobiSys/MobiCom, SIGCOMM*, IMC, PLDI*
- * I never (or failed to) publish there.

System research conferences

- The research cycle is long.
- So as the publication cycle.

natefoster @natefoster · Aug 27 In 2018, @CSrankings counted 3456 papers in AI/ML (AAAI + IJCAI + ICML + KDD + NeurIPS) vs. 47 in Operating Systems (OSDI [only held in even years] + SOSP [only held in odd years])

• There not many papers to read, but you are expected to read the small number of published work.

Class Discussion

- There will be no "lecture."
 - This is a 500-level course.
- We will discuss papers by playing card games.
 - We will practice it today 🙂
- You can volunteer or will be asked to discuss questions in class.
 - If you do not read the paper, you will be embarrassed.

Course Project

- A research project fitting in the broad definition of "systems."
 - In a group of **1** or **2**.
 - If you have strong reasons to do a large project in a team of more than 2, talk to us first.
- Please form groups before the end of next week.
 - Send me an email by the end of next week identifying who is in your group

Most projects fall into the following categories:

- Study: qualitatively or quantitatively analyze an important aspect of one type of systems.
- Measure: measure and characterize an important aspect of one type of systems through experimentations.
- **Tool**: design and implement a new tool that can address an important problem in modern systems
- System: design and implement a novel system with new capabilities or properties

Examples

- Study
 - Chou et al., An Empirical Study of Operating Systems Errors, SOSP 2001.
- Measure
 - Pillai et al., All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications, OSDI 2014.
- Tool
 - Li et al., CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating System Code, OSDI 2004.
- System
 - Rosenblum et al., The Design and Implementation of a Log-Structured File System, SOSP 1991.

Evaluation of research projects

- It will be evaluated using the same criteria as SOSP/OSDI submissions.
 - Overall merit
 - Importance of the topic
 - Originality and insightfulness
 - Validation and thoroughness
 - Presentation and clarify
- **Dream bar**: CP-miner, Veriflow
- High bar: sufficiently interesting to be a real paper
- Low bar: something you can brag about

What if you are not able to (or not interested in) find decent idea?

- We prepared a measurement project for you.
- Container measurement project (CMP)
 - Measure the performance overhead of modern container techniques (e.g., Docker versus gVisor)
 - Understand the nitty-gritty details that affect the performance of containerized applications
 - Learn how to conduct a solid measurement study
 - which will benefit your future research/work
 - Potentially aiming for a sigmetrics-like conference
 - Link: <u>https://cs523-uiuc.github.io/fall19/cmp.html</u>

Project Timeline (12 Weeks in Total)

- End of Week 3: Submit project proposal
 - A well-defined research problem and feasible solutions.
 - Show the feasibility by concrete examples, datasets, and tools for system building.
 - I encourage you try me the idea before deciding on the project.

• End of Week 7: Submit Checkpoint 1 report

- Show your system/tool prototype and preliminary results.
- Your prototypes should be able to work with your motivating examples.

• End of Week 11: Submit Checkpoint 2 report

- (At this point, you are expected to build your system/tool and start evaluation)
- Describe the detailed evaluation plan in your report.
- Final project demo (15 min)
- Submit final project report (6 pages)

Exploring your project NOW!

Initial project proposals due in 3 weeks (one page)

- What do you plan to do?
- Why is it interesting?
- How you'll do it (feasibility)?
- What you're not sure about?

Problem Statement

Grading

- A to A+: significant results and publishable work;
- A- to A: strong results and a clear roadmap towards publishable work;
- B+ to A-: interesting results but quite far from being significant;
- **B to B+:** a good exploration but leads to nothing;
- **B- to B**: some efforts of exploration; no conclusion.

(You should have the courage to explore and fail)

Tips

- Pick a good problem
 - Why is this problem interesting?
 - What is the impact of solving this problem?
 - Look at what others are doing:
 - Academic conferences: OSDI/SOSP, NSDI, EuroSys, SOCC, ATC
 - Engineering blogs and postmortems
- Pick a problem that is achievable.
 - Start from small (you only have one semester)
 - What resources would you need to investigate the problem? (ask if you're serious)
- Think about how to evaluate your work

We take a very **broad** and **inclusive** view of system research.

- It is well connected to areas like architecture, PL, SE, HPC, networking, and embedded/mobile.
- Security and reliability are essential aspects of system design and implementation.
- Everyone is talking about Sys4ML and ML4Sys.
- It can be even broader, e.g.,
 - Visualizing large-scale system data (e.g., logs and traces)
 - Human factors in system operations and management
 - Education of operating systems
 - Cryto for OS

Questions about the project?

- We are always here to help (use us well; but don't abuse us)
 - Slack channel
 - Email
 - Office Hour
 - Appointment
- Systems research requires no genius.
 - It requires understanding and experiences.

- Write on the card
 - Your full name
 - The name you want me to call you
 - A description about yourself

- Tianyin Xu
- Tianyin/TY/t
- A watchman in a cornfield

- What's your name?
- What are you working on?
- What are you looking for in cs523?
- What is the coolest thing you did in the summer?

- My name is Tianyin.
- I work on system reliability.
- I hope to have fun in cs523.
- I worked with Dimitrios, Apo, and Josep on new page table designs in the summer.

- What is an operating system?
- What is inside an operating system?
 - Is Window systems a part of OS?
 - The question discussed in the supreme court in 1998
 - How about web browser?
 - Apache web server?
 - Compiler?
 - Device firmware?

- What drives an OS design to change?
 - Hardware trend?
 - Application demand?
 - User demand?
- Can you give concrete examples?

- What is virtual memory?
- Why do we need virtual memory?
- How does virtual memory actually work?

- What is a "virtual machine"?
- Is container a virtual machine?

• What is a system call?